Bangalore
+917022215556

'disinfectant measure industry'

Items tagged with 'disinfectant measure industry'

product image
Enviro Structured Water Treatment

Discover the benefits of using structured water units in your industry. Structured water reduces hard water deposits & prevents scaling. This translates to better functioning of machinery & reduced downtime. In commercial boilers and RO units, there is a significant cost benefit to using our structured water devices. In the textile industry, structured water has yielded many benefits, from reduced clogging of water lines to lower consumption of detergent in washing machines. When used to cure concrete it has improved its impact strength

Send Message
product image
Enviro Structured Water Treatment

Discover the benefits of using structured water units in your industry. Structured water reduces hard water deposits & prevents scaling. This translates to better functioning of machinery & reduced downtime. In commercial boilers and RO units, there is a significant cost benefit to using our structured water devices. In the textile industry, structured water has yielded many benefits, from reduced clogging of water lines to lower consumption of detergent in washing machines. When used to cure concrete it has improved its impact strength

Send Message
product image
Ultrafiltration System

Ultrafiltration (UF) is a membrane filtration process similar to Reverse Osmosis, using hydrostatic pressure to force water through a semi-permeable membrane. The pore size of the ultrafiltration membrane is usually 103 - 106 Daltons. Ultrafiltration (UF) is a pressure-driven barrier to suspended solids, bacteria, viruses, endotoxins and other pathogens to produce water with very high purity and low silt density. Ultrafiltration (UF) is a variety of membrane filtration in which hydrostatic pressure forces a liquid against a semi permeable membrane. Suspended solids and solutes of high molecular weight are retained, while water and low molecular weight solutes pass through the membrane. Ultrafiltration is not fundamentally different from reverse osmosis, microfiltration or nanofiltration, except in terms of the size of the molecules it retains. A membrane or, more properly, a semi permeable membrane, is a thin layer of material capable of separating substances when a driving force is applied across the membrane. Once considered a viable technology only for desalination, membrane processes are increasingly employed for removal of bacteria and other microorganisms, particulate material, and natural organic material, which can impart color, tastes, and odors to the water and react with disinfectants to form disinfection byproducts (DBP). As advancements are made in membrane production and module design, capital and operating costs continue to decline. The pressure-driven membrane processes discussed in this fact sheet are microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO).

Send Message
product image
Ultrafiltration System

Ultrafiltration (UF) is a membrane filtration process similar to Reverse Osmosis, using hydrostatic pressure to force water through a semi-permeable membrane. The pore size of the ultrafiltration membrane is usually 103 - 106 Daltons. Ultrafiltration (UF) is a pressure-driven barrier to suspended solids, bacteria, viruses, endotoxins and other pathogens to produce water with very high purity and low silt density. Ultrafiltration (UF) is a variety of membrane filtration in which hydrostatic pressure forces a liquid against a semi permeable membrane. Suspended solids and solutes of high molecular weight are retained, while water and low molecular weight solutes pass through the membrane. Ultrafiltration is not fundamentally different from reverse osmosis, microfiltration or nanofiltration, except in terms of the size of the molecules it retains. A membrane or, more properly, a semi permeable membrane, is a thin layer of material capable of separating substances when a driving force is applied across the membrane. Once considered a viable technology only for desalination, membrane processes are increasingly employed for removal of bacteria and other microorganisms, particulate material, and natural organic material, which can impart color, tastes, and odors to the water and react with disinfectants to form disinfection byproducts (DBP). As advancements are made in membrane production and module design, capital and operating costs continue to decline. The pressure-driven membrane processes discussed in this fact sheet are microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO).

Send Message
product image
Ultrafiltration System

Ultrafiltration (UF) is a membrane filtration process similar to Reverse Osmosis, using hydrostatic pressure to force water through a semi-permeable membrane. The pore size of the ultrafiltration membrane is usually 103 - 106 Daltons. Ultrafiltration (UF) is a pressure-driven barrier to suspended solids, bacteria, viruses, endotoxins and other pathogens to produce water with very high purity and low silt density. Ultrafiltration (UF) is a variety of membrane filtration in which hydrostatic pressure forces a liquid against a semi permeable membrane. Suspended solids and solutes of high molecular weight are retained, while water and low molecular weight solutes pass through the membrane. Ultrafiltration is not fundamentally different from reverse osmosis, microfiltration or nanofiltration, except in terms of the size of the molecules it retains. A membrane or, more properly, a semi permeable membrane, is a thin layer of material capable of separating substances when a driving force is applied across the membrane. Once considered a viable technology only for desalination, membrane processes are increasingly employed for removal of bacteria and other microorganisms, particulate material, and natural organic material, which can impart color, tastes, and odors to the water and react with disinfectants to form disinfection byproducts (DBP). As advancements are made in membrane production and module design, capital and operating costs continue to decline. The pressure-driven membrane processes discussed in this fact sheet are microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO).

Send Message

Still searching for
disinfectant measure industry?