Chennai
+919360025158

'method membrane life'

Items tagged with 'method membrane life'

product image
Booster Pump

CMB3-46PT is the perfect choice for 3-4 outlets Boosting from mains: Increases the water pressure delivered by city mains Boosting from tanks: Increases water pressure from roof tanks, break tanks and ground tanks, including rainwater tanks. Highlights: Perfect water pressure: Intelligent pump control adjusts operation automatically Easy selection: One variant for all domestic boosting needs Easy installation: Compact, all-in-one solution, plug-and-pump, installation service available by Grundfos certified installer Easy to operate: User-friendly control panel Quiet operation - Low noise operation Grundfos pump with automatic start stop system Dry running protection - Auto start when using water, auto stop when not using water 2.5 Years warranty - 2 years manufacturer warranty by Grundfos India, extra 6 months warranty if you buy from us Quality Assurance: Each CMB-PT is factory assembled and tested before delivery Long lifetime: Major pump components are manufactured from corrosion and wear resistant stainless steel. Suitable for 3-4 outlets NEW INSTALLATION: One stop centre - We prioritize our installation add-on service to our customers who also purchase Grundfos water pumps from us Guaranteed after sales service - 2.6 years warranty for Grundfos water pump Trustworthy and reliable - Installation by Grundfos water pump certified installer Piping from water tank to water pump is included Long lasting material used - By default we use PVC pipe & fittings for water pump installation, however mostly our professional installer had to adjust to client existing piping system depending on situation AND EXTRA CHARGES NEEDED BECAUSE DIFFERENT BASIC MATERIALS. Trustworthy and reliable - Installation by Grundfos water pump certified installer (Wiring) House plumbing & power point for water pump to be ready by client before installation. If client requires us to do wiring service, it can be arranged but with extra charges.

Send Message
product image
Ultrafiltration System

Ultrafiltration (UF) is a membrane filtration process similar to Reverse Osmosis, using hydrostatic pressure to force water through a semi-permeable membrane. The pore size of the ultrafiltration membrane is usually 103 - 106 Daltons. Ultrafiltration (UF) is a pressure-driven barrier to suspended solids, bacteria, viruses, endotoxins and other pathogens to produce water with very high purity and low silt density. Ultrafiltration (UF) is a variety of membrane filtration in which hydrostatic pressure forces a liquid against a semi permeable membrane. Suspended solids and solutes of high molecular weight are retained, while water and low molecular weight solutes pass through the membrane. Ultrafiltration is not fundamentally different from reverse osmosis, microfiltration or nanofiltration, except in terms of the size of the molecules it retains. A membrane or, more properly, a semi permeable membrane, is a thin layer of material capable of separating substances when a driving force is applied across the membrane. Once considered a viable technology only for desalination, membrane processes are increasingly employed for removal of bacteria and other microorganisms, particulate material, and natural organic material, which can impart color, tastes, and odors to the water and react with disinfectants to form disinfection byproducts (DBP). As advancements are made in membrane production and module design, capital and operating costs continue to decline. The pressure-driven membrane processes discussed in this fact sheet are microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO).

Send Message
product image
Ultrafiltration System

Ultrafiltration (UF) is a membrane filtration process similar to Reverse Osmosis, using hydrostatic pressure to force water through a semi-permeable membrane. The pore size of the ultrafiltration membrane is usually 103 - 106 Daltons. Ultrafiltration (UF) is a pressure-driven barrier to suspended solids, bacteria, viruses, endotoxins and other pathogens to produce water with very high purity and low silt density. Ultrafiltration (UF) is a variety of membrane filtration in which hydrostatic pressure forces a liquid against a semi permeable membrane. Suspended solids and solutes of high molecular weight are retained, while water and low molecular weight solutes pass through the membrane. Ultrafiltration is not fundamentally different from reverse osmosis, microfiltration or nanofiltration, except in terms of the size of the molecules it retains. A membrane or, more properly, a semi permeable membrane, is a thin layer of material capable of separating substances when a driving force is applied across the membrane. Once considered a viable technology only for desalination, membrane processes are increasingly employed for removal of bacteria and other microorganisms, particulate material, and natural organic material, which can impart color, tastes, and odors to the water and react with disinfectants to form disinfection byproducts (DBP). As advancements are made in membrane production and module design, capital and operating costs continue to decline. The pressure-driven membrane processes discussed in this fact sheet are microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO).

Send Message
product image
Water Conditioner

Enviro Brine+ Hard Water Brine inhibits Calcium formation because of Hard Bore Water used in Houses for Utility Purpose (Like Taking Bath, Washing, etc). Because of Hard Water Taps, Tiles, Geyser Rods all become white and also hard to operate. Same with our Hair too. They become dry and stiff. The looks of the House also deteriorate. Appliances using Bore water like Geyser, Washing Machine, etc also deteriorate because of internal damage and corrosion thus reducing their life. This also prevents corrosion of your house Piping System. All this can be eliminated by using our Revolutionary Hard Water Conditioner. The Product media is Odourless, Tasteless and PH neutral. The system masks the calcium ions to become inert by using proprietary technology

Send Message
product image
Reverse Osmosis Plant

A reverse osmosis (RO) plant is a water treatment facility that uses reverse osmosis technology to purify water by removing contaminants, dissolved salts, and impurities. Below are different aspects and descriptions of an RO plant based on its components, applications, and operations: General Description Definition: A reverse osmosis plant is a water purification system that applies pressure to force water through a semi-permeable membrane, effectively removing impurities, salts, and microorganisms. Purpose: It is designed to provide high-quality water for drinking, industrial processes, irrigation, or specific uses like medical applications. Components Pretreatment System: Includes filters, water softeners, and dosing systems to remove large particles, chlorine, and other contaminants that could damage the RO membranes. High-Pressure Pump: Generates the necessary pressure to push water through the semi-permeable membranes, overcoming the natural osmotic pressure. RO Membranes: The core of the plant, designed to allow only water molecules to pass while blocking salts, minerals, and impurities. Post-Treatment System: May include UV sterilization, pH adjustment, or remineralization to make the purified water suitable for its intended use. Control System: Automates the operation, monitors parameters, and ensures the plant functions efficiently and safely. Applications Drinking Water Production: Supplies potable water in urban, rural, or disaster-relief settings. Industrial Use: Produces ultrapure water for pharmaceuticals, electronics manufacturing, and power plants. Desalination: Converts seawater into fresh water in arid regions or areas with limited freshwater resources. Irrigation: Provides purified water for agriculture, ensuring crop health by reducing salinity. Wastewater Treatment: Recycles wastewater by removing contaminants for reuse. Advantages Produces high-quality water with minimal impurities. Removes a wide range of contaminants, including heavy metals, dissolved salts, and bacteria. Energy-efficient compared to thermal desalination processes. Scalable, from small household units to large industrial plants. Limitations Requires a significant amount of feed water, as some is rejected as waste. Regular maintenance and replacement of membranes are necessary. Energy-intensive, especially for high-pressure systems. Pretreatment is critical to avoid fouling and scaling of membranes. Environmental Impact Positive: Provides clean drinking water, supports sustainable water management, and reduces dependency on groundwater. Negative: Brine disposal from the plant can harm the environment if not managed properly.

Send Message
product image
Reverse Osmosis Plant

A reverse osmosis (RO) plant is a water treatment facility that uses reverse osmosis technology to purify water by removing contaminants, dissolved salts, and impurities. Below are different aspects and descriptions of an RO plant based on its components, applications, and operations: General Description Definition: A reverse osmosis plant is a water purification system that applies pressure to force water through a semi-permeable membrane, effectively removing impurities, salts, and microorganisms. Purpose: It is designed to provide high-quality water for drinking, industrial processes, irrigation, or specific uses like medical applications. Components Pretreatment System: Includes filters, water softeners, and dosing systems to remove large particles, chlorine, and other contaminants that could damage the RO membranes. High-Pressure Pump: Generates the necessary pressure to push water through the semi-permeable membranes, overcoming the natural osmotic pressure. RO Membranes: The core of the plant, designed to allow only water molecules to pass while blocking salts, minerals, and impurities. Post-Treatment System: May include UV sterilization, pH adjustment, or remineralization to make the purified water suitable for its intended use. Control System: Automates the operation, monitors parameters, and ensures the plant functions efficiently and safely. Applications Drinking Water Production: Supplies potable water in urban, rural, or disaster-relief settings. Industrial Use: Produces ultrapure water for pharmaceuticals, electronics manufacturing, and power plants. Desalination: Converts seawater into fresh water in arid regions or areas with limited freshwater resources. Irrigation: Provides purified water for agriculture, ensuring crop health by reducing salinity. Wastewater Treatment: Recycles wastewater by removing contaminants for reuse. Advantages Produces high-quality water with minimal impurities. Removes a wide range of contaminants, including heavy metals, dissolved salts, and bacteria. Energy-efficient compared to thermal desalination processes. Scalable, from small household units to large industrial plants. Limitations Requires a significant amount of feed water, as some is rejected as waste. Regular maintenance and replacement of membranes are necessary. Energy-intensive, especially for high-pressure systems. Pretreatment is critical to avoid fouling and scaling of membranes. Environmental Impact Positive: Provides clean drinking water, supports sustainable water management, and reduces dependency on groundwater. Negative: Brine disposal from the plant can harm the environment if not managed properly.

Send Message

Still searching for
method membrane life?